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Abstract

Background: With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds
a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered
by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for
subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled
across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative
SNPs for ancestry inference.

Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could
show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry
inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which
correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of
96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation
between the subspecies caused by close geographical proximity, or human interference of genetic integrity of
reference subspecies, or a combination thereof.
(Continued on next page)
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Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support
breeding activities in order to preserve the genetic heritage of European honey bees.
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Background
Honey bees (Apis mellifera L.) are the most important
managed pollinators and currently under threat due to a
multitude of pressures worldwide [1, 2]. The species
shows considerable variation across its natural range and
is comprised of at least 30 described subspecies belong-
ing to different evolutionary lineages [3–6]. Europe holds
a large fraction of this honey bee diversity with numer-
ous endemic subspecies representing four evolutionary
lineages, namely the African lineage (A), Central and
Eastern European lineage (C), Western and Northern
European lineage (M), and Near East and Central Asian
lineage (O) [7, 8]. However, this diversity and the natural
distribution range of European honey bees have been in-
fluenced by anthropogenic factors to an extent that sev-
eral locally adapted populations are at risk due to
introgression and crossbreeding [9–11]. Large-scale
queen breeding, commercial trade and long distance mi-
gratory beekeeping may reduce genetic diversity and can
lead to genetic homogenization of admixed populations
[9, 12] and potential subsequent loss of local adapta-
tions. In fact, it has been demonstrated that locally
adapted honey bees have higher survivability [13] from
which follows that the conservation of the underlying
genotypic variation must be a priority for the long-term
sustainability of populations [14]. To conserve the honey
bees’ natural heritage and thereby its adaptive potential
to future global change, there is a need to promote the
sustainable breeding of certified local subspecies.
Numerous conservation efforts for native honey bees

have been initiated across Europe [9, 10, 15, 16]. The
success of such conservation efforts including genetic
improvement programs [17, 18] depends on mating
within the population of interest, which is complicated
by the honey bees’ mating system where virgin queens
mate freely with multiple drones from surrounding col-
onies [19, 20]. Beyond the use of isolated mating apiaries
or artificial insemination, successful mating control mea-
sures can include different management techniques of
queens and drones [21] and regular monitoring of gen-
etic origin and parentage. In some countries and regions
in Europe, queen importations are restricted to the na-
tive honey bee subspecies [22, 23] or ecotypes [24, 25].
In such instances, when trading queens or colonies
across national borders, queen origin needs to be veri-
fied. Additionally, authentication of the genetic origin of
bee products in terms of a certifiable native bee label,

could help beekeepers to better market their hive prod-
ucts [26]. Thus, to implement effective border control,
increase economic value of bee products and to support
informed conservation and breeding management deci-
sions across Europe, there is a demand for diagnostic
genetic test to reliably infer the subspecies of origin.
With the advances of high-throughput sequencing and

genotyping technology in the last decade, reference ge-
nomes, whole-genome sequence data, and thousands of
individual genotypes are now available for many species.
Within these oftentimes massive data sets, it is possible
to mine for highly informative single nucleotide poly-
morphisms (SNPs) that can then be exploited to geno-
type a larger number of individuals [27, 28]. Such
genotyping panels based on a selected set of informative
SNPs have been developed for numerous species, includ-
ing humans, and can be used to infer introgression, gen-
etic ancestry, population structure, genetic stock
identification, and food forensics [29–31].
Different approaches have been used to select inform-

ative SNPs from larger genotyping panels or sequence
data (reviewed in [32, 33]). The most common and
popular method for selection is population differenti-
ation as estimated by FST, which is based on allele fre-
quency differences between populations expressing the
variation among populations relative to the total popula-
tion [34, 35]. Principal Component Analysis (PCA) has
also been employed to identify informative SNPs, since
it reduces feature dimensionality while only losing little
information and is particularly advantageous with com-
plex population structures [28, 36]. Given a set of in-
formative SNP markers, supervised classification and so-
called assignment tests are employed whereby an indi-
vidual is assigned to predefined classes (i.e., subspecies
or populations of origin). Classical applications of as-
signment testing in population genetics first used super-
vised parametric likelihood-based approaches [37, 38].
Recently, new methods, together referred to as super-
vised machine learning (ML), have emerged in computa-
tional population genomics [39]. The general approach
for any supervised ML classifiers is to split the data into
a reference (training) set to ‘learn’ a function that can
discriminate between the given data classes [40]. This
function is then used to predict the probability of an ‘un-
known sample’ (test) of belonging to any given class (e.g.
subspecies). The accuracy of the classification, expressed
as the proportion of test individuals correctly classified
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to their population of origin, is influenced by the proper-
ties of the training data set (i.e., number of samples, gen-
etic diversity, levels of population differentiation, degree
of overlap in data distribution and quality of reference
samples) [41]. ML classifiers aim to optimize the pre-
dictive accuracy of an algorithm rather than performing
parameter estimation of a probabilistic model, and they
have the potential to be agnostic to the assessment of
the given dataset, i.e. without assumptions of the pro-
cesses leading to differentiation, including the evolution-
ary history [39].
For honey bees, different SNP panels have been de-

signed, for instance to identify and estimate C-lineage
introgression in M-lineage subspecies A. m. iberiensis
and A. m. mellifera [15, 42–46]. The latter subspecies is
native to northern and western Europe and once occu-
pied a large fraction of the European territory, but is
now threatened and even has been completely replaced
in much of its range [10, 47, 48]. Moreover, SNP panels
have also been developed to infer the level of
Africanization and ancestry in honey bees of the New
World and Australia [46, 49, 50]. However, for most A.
mellifera subspecies, whose populations have been gen-
etically examined to a lesser extent or not at all, molecu-
lar knowledge at this level of detail is still lacking. These
subspecies and locally adapted populations or ecotypes
appear more vulnerable due to the extant multiple
threats to honey bees.
The SmartBees project was initiated with the pur-

pose of developing new tools to describe and con-
serve honey bee diversity in Europe. We have
designed a molecular tool consisting of highly inform-
ative SNP markers suitable for assigning honey bee
individuals to their subspecies of origin, based on a
comprehensive sampling of European honey bee di-
versity. Based on pool-sequence data from 1995
worker bees representing 22 populations, four evolu-
tionary lineages and 14 subspecies, we selected 4400
informative SNPs employing two powerful and com-
monly used approaches (FST and PCA). Of these,
4165 SNPs, for which probes could be designed and
which passed the BeadChip decoding quality metric,
were genotyped in 3903 individual bees using the Illu-
mina Infinium platform. Final quality control filtering
left 4094 reliable SNPs to build a statistical model
using machine learning (ML) algorithms for assign-
ment of European honey bees to 14 different genetic
origins. The best model was the Linear Support
Vector Classifier (Linear SVC) which could correctly
assign 96.2% of the tested samples to their genetic
origin. Thus, the here presented method accurately
identifies European subspecies, which is crucial to
support management strategies in sustainable honey
bee breeding and conservation programs.

Results
Samples and pool-sequencing
A total of 22 populations representing the four European
evolutionary lineages and 14 subspecies have been sam-
pled from their native ranges throughout Europe and ad-
jacent regions (Tables 1 and S1). Each selected
population included up to 100 worker bees from unre-
lated colonies, totaling 2145 samples, which represents
the most comprehensive sampling effort for the study of
European honey bees to date. The samples from each
population were homogenized, pooled and their DNA
extracted. Sequencing on an Illumina HiSeq 2500, pro-
duced 1.6 billion paired-end fragments (3.2 billion indi-
vidual reads) with an average read length of 125 bp, and
a total genome depth of coverage of 2800x. Sequencing
and variant statistics can be found in Table S2.

Selected SNPs
While main evolutionary lineages were easily differenti-
ated with only few SNPs (Figure S1A), it was more chal-
lenging to differentiate closely related subspecies with a
reduced number of genetic markers. Given the complex,
hierarchical population structure of European honey
bees, we employed two powerful and commonly used
approaches, PCA (Figure S1) and FST, to identify the
most discriminant markers to differentiate subspecies of
European honey bees (see details in Methods and
supplementary materials and methods). Based on the
variants infered from the pool-sequence data, we se-
lected 4400 informative SNPs, of these, a total of 4165
SNPs passed the decoding quality metric for genotyping
using the Illumina Infinium custom-designed BeadChip,
indicating that 99% of the originally submitted probes
were suitable for genotyping. The SNPs are distributed
across all of the 16 honey bee chromosomes as well as
in unplaced contigs (Table S3), with an average distance
between SNPs of 64 kb. SNP information and genomic
position of the 4165 SNPs selected to differentiate Euro-
pean honey bee subspecies are presented in
Additional file 1.

Sample genotyping and visualization
Of the 4165 SNPs, 4094 were successfully genotyped in
3896 individual bees using Illumina Infinium BeadChip
technology (Table 1). With only 71 SNPs never produ-
cing any data, the genotyping success rate (SNP valid-
ation) rate was 98%. The average call rate per individual
was 0.87, varying among samples of every subspecies
from 0.84 in A. m. cypria to 0.89 in A. m. adami (Table
S4). More than one-third of the samples have a call rate
exceeding 0.9.
The genotype data of the individuals from the pool se-

quencing is visualized in a t-SNE plot [51] that reduces
high-dimensional data to a two-dimensional map where
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Table 1 Samples individually genotyped for subspecies classification (NTOT = 3896) consisting of individual samples from the pool
sequencing (in bold, N = 1998, excluding 62 outliers) and new independent samples (N = 1908). Samples were collected from their
native range and labelled based on previous studies, morphometric analysis or local knowledge (see Methods sections and Table
S1). 70% of pool sequencing samples (N = 1391) were used as training data for building the model, while the remaining 30%
(N = 597) together with the independent samples (NTotal = 2505) were considered as out-of-sample data for subsequent validation

Evolutionary lineage Subspecies Sampling country Pool name / Sampling group N NTOT

A A. m. ruttneri Malta rut_mlt 91 187

MLT 96

C A. m. adami Crete, Greece ada_grc 82 82

A. m. carnica Austria & Hungary car_aut_hun 93 825

Croatia & Slovenia car_svn_hrv 95

Croatia HRV 94

Denmark DNK 89

France FRA 8

Germany GER 282

Poland POL 40

Serbia SRB 49

Slovenia SVN 75

“A. m. carpatica” Romania & Moldova carp_rou_mda 86 86

A. m. cecropia France FRA 4 4

Greece cec_grc 93 140

GRC 47

A. m. ligustica Italy lig_ita 84 143

ITA 59

A. m. macedonica N. Macedonia & N-Greece mac_mkd_grc 86 429

Greece GRC 49

N. Macedonia MKD 96

Germany GER 198

“A. m. rodopica” Bulgaria rod_bgr 84 84

M A. m. iberiensis Spain & Portugal ibe_esp_west_prt 94 460

Spain ibe_esp_eus 96

ibe_esp_north 91

ibe_esp_south 64

ESP 115

A. m. mellifera Belgium BEL 96 1066

Denmark mel_dnk 96

DNK 97

Finland FIN 15

France FRA 49

Ireland mel_irl 96

Isle of Man mel_imn 92

Norway NOR 12

Poland POL 33

Russia mel_rus 96

Scotland SCT 280

Sweden SWE 8

Switzerland mel_che 96
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each individual is represented by a point (Fig. 1). The ge-
notyped samples were grouped in several separated clus-
ters according to their evolutionary lineage or subspecies
of origin (Fig. 1). Within each lineage, most of the indi-
viduals from the same geographic origin were closely
grouped together and generally well separated from
neighboring groups. The only A-lineage subspecies in
our study, A. m. ruttneri, was placed in the center inter-
mediate to the other clusters. In the O-lineage, A. m.

cypria bees were well separated from A. m. anatoliaca,
A. m. caucasia and A. m. remipes, which appear less well
differentiated. The two subspecies of the M-lineage were
well differentiated, with A. m. mellifera populations
grouped in three subclusters separating the distant
(Burzyan region, Russia, top A. m. mellifera cluster in
Fig. 1) or isolated (Læsø island, Denmark, bottom A. m.
mellifera) sampling regions. C-lineage samples grouped
into three subclusters: (i) A. m. ligustica, (ii) A. m.

Table 1 Samples individually genotyped for subspecies classification (NTOT = 3896) consisting of individual samples from the pool
sequencing (in bold, N = 1998, excluding 62 outliers) and new independent samples (N = 1908). Samples were collected from their
native range and labelled based on previous studies, morphometric analysis or local knowledge (see Methods sections and Table
S1). 70% of pool sequencing samples (N = 1391) were used as training data for building the model, while the remaining 30%
(N = 597) together with the independent samples (NTotal = 2505) were considered as out-of-sample data for subsequent validation
(Continued)

Evolutionary lineage Subspecies Sampling country Pool name / Sampling group N NTOT

O A. m. anatoliaca Turkey ana_tur 94 94

A. m. remipes Armenia rem_arm 90 90

A. m. caucasia Poland cau_tur_geo 96 113

Denmark DNK 4

NE-Turkey & Georgia POL 13

A. m. cypria Cyprus cyp_cyp 93 93

Total 3896

Fig. 1 Visualization using a t-SNE manifold plot of the 1988 honey bee samples from the pool sequencing individually genotyped for 4094 SNPs.
Samples have been color-coded according to the subspecies reference populations corresponding to the 14 classes used for subsequent
supervised machine learning classification
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carnica bees including part of the “A. m. carpatica” sam-
ples and (iii) a heterogeneous subcluster of A. m. mace-
donica, A. m. cecropia, A. m. adami, “A. m. rodopica”
and the rest of “A. m. carpatica” bees. A t-SNE plot with
sample labels according to their pool of origin is pre-
sented in Figure S2.

Sample classification using machine learning
We employed machine learning (ML) methods to build
a model for the classification and assignment of Euro-
pean honey bees to its subspecies of origin. Out of the
tested ML algorithms, the best performing model was
the Linear SVC (Table S5). The model calculates the
prediction probability for a sample to belong to any of
the 14 reference populations. Each test sample was clas-
sified into the subspecies which showed the highest pre-
diction probability ranging from as low as 0.29 to 1.0
with a median of 0.98 (Figure S3).
A confusion matrix was used to summarize, describe

and visualize the performance of the Linear SVC classifi-
cation model on a set of test data (out-of-sample data,
N = 2505) for which the true values (subspecies) were
known. For the lineages, the model is capable of predict-
ing all samples with 100% accuracy (Figure S4). For the
subspecies, the confusion matrix revealed that for most
of them the model accurately predicted the ancestry of
the test samples (N = 2505), with only a few exceptions
(Fig. 2a). The accuracy ranged from 65 to 100%, indicat-
ing that some subspecies are easier to distinguish than
others. In total 96.2% of test samples were correctly pre-
dicted, while 95 individuals (3.8%) were misclassified,

i.e., predicted by the model with a different subspecies
than the labeled one (true values), for instance: four A.
m. ligustica bees were predicted as A. m. carnica, two
“A. m. carpatica” bees each as either A. m. carnica or A.
m. macedonica, and 23 A. m. cecropia bees were pre-
dicted as A. m. macedonica.
The model predicts the probability that a given sample

belongs to one of the 14 subspecies under study. On this
basis, the test samples were assigned to a certain subspe-
cies based on the highest prediction probability, even if
the probability was low (see above). Therefore, with the
purpose of increasing the certainty of classification we
set a probability threshold, so to ensure that only sam-
ples very likely belonging to any of the 14 subspecies
were assigned, while test samples with low prediction
probabilities were considered unassigned. In Fig. 2b, we
show an example of setting a probability threshold at
90%. By setting this threshold, we increased the propor-
tion of truly assigned samples from 96.1 to 99.6%, while
the misclassification rate fell from 3.9 to 0.4%. However,
407 of the test individuals remained “unassigned”, for in-
stance, 22 out of the 23 A. m. cecropia bees predicted as
A. m. macedonica were no longer considered misclassi-
fied but enter the unassigned category.

Discussion
In this study, we performed a large-scale and compre-
hensive sampling following a standardized procedure,
and aimed to capture as much of the honey bee genetic
diversity in Europe as possible by deep-sequencing of
pooled populations. Further, we applied two powerful

Fig. 2 Confusion matrix for test samples (out-of-sample data, N = 2505) showing the (rounded) percentages of truly assigned individuals
(diagonal) and percentages of individuals assigned to a different subspecies (misclassified; upper and lower triangles). a Assignment based on the
highest prediction probability classifies each of the test individuals to a subspecies, while b using a probability threshold of 90% some samples
are considered “unassigned” and excluded from the confusion matrix
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SNP selection methods [32, 33] to address diversity at
different levels of differentiation (lineages, subspecies,
populations). Subsequently, these ancestry informative
markers were employed to build a model to classify sam-
ples of European honey bees into subspecies.
The considerable honey bee diversity poses a challenge

when it comes to providing a discriminative tool applic-
able across Europe. The four European lineages were
easily distinguished genetically with only 200 SNPs due
to their ancient divergence [52], but difficulties arose at
a lower hierarchical level of differentiation. Subspecies
from the same evolutionary lineage diverged only re-
cently [53] and are, thus, genetically very close. More-
over, there are some areas in Europe where A. mellifera
subspecies variation has not yet been exhaustively de-
scribed, while in others human-mediated introgression
contributes to blurring the natural boundaries between
subspecies [42, 48, 54]. National breeding programs can
also disrupt the natural gene flow and may contribute to
changing the genetic background of the original subspe-
cies [11, 12, 55, 56]. In fact, in our study applying a
stringent filtering option we only identified few unique
SNPs that were exclusive to one population. Similarly,
other population genomics studies have found a high de-
gree of allele sharing across and within evolutionary line-
ages [7, 53]. In contrast, we found variation in the
average call rate per individual between subspecies
which may, in part, be explained by the presence of null
alleles (alleles producing no signal), suggesting sequence
variation or subspecies-specific deletions within the
probe site. Probes that did not work for certain subspe-
cies (i.e. missing data), in fact, contain valuable informa-
tion and even enriched our model.
We employed a machine learning (ML) approach to

build a model for subspecies classification. ML takes ad-
vantage of high dimensional input and provides an im-
provement of prediction accuracy in a model-free
approach [39, 40]. In this way, subtle differences can be
revealed which was particularly relevant in our study,
due to the high number of closely related subspecies we
wanted to discriminate. Our best performing model was
Linear SVC, member of the family of Support Vector
Machines (SVMs), which are known to generalize well
because they are designed to maximize the margin be-
tween any two classes (subspecies) [57]. Typical bio-
logical applications of SVMs include protein function
prediction, transcription initiation site prediction and
gene expression data classification (reviewed in 57). In
the field of population genetics, a thorough ML ap-
proach to select the best model is generally not yet com-
monly implemented, although specific models have been
developed for ancestry inference [58, 59]. Here, we em-
ploy a comprehensive ML approach based on genotype
data for honey bee subspecies diagnosis.

Despite the comprehensive sampling effort, the careful
SNP selection and the application of the latest classifica-
tion methods, some limits remain in the diagnostic sys-
tem. For instance, within the C-lineage we have
experienced problems in differentiating samples accord-
ing to the alleged subspecies. Such misclassification of
individuals can be explained by various factors coming
together: (i) this lineage is of comparatively recent origin
[53] and (ii) consists of multiple highly interrelated sub-
species within close geographical proximity (see Figure
S1D); (iii) the taxonomic status of some populations has
not yet been fully resolved [60–62]; and (iv) the genetic
background of some populations is being altered by
introgression due to human interference [63]. Further-
more, labelling errors of the out-of-data samples could
not be ruled out as an additional source of misclassifica-
tion, especially if we refer to those samples for which the
model predicted a different subspecies with high prob-
ability. Supervised ML relies on the qualities of the refer-
ence data for classification, thus, in the future, we aim to
refine the training data to improve the model prediction
accuracy and reduce the misclassification rate.
It is also important to note, that by setting a probabil-

ity threshold for the assignment of any subspecies, the
misclassification rate was reduced, for some subspecies
considerably. While such a threshold increases the confi-
dence in subspecies prediction, it also implied, however,
that quite a few individuals were left “unassigned”. What
threshold is used as a cut-off for subspecies classification
depends on the specific circumstances and the applica-
tion. For example, for the conservation of a small endan-
gered population the threshold might be set lower in
order to maintain genetic diversity, than for instance in
a pure breeding line under selection for specific traits.
Overall, earlier methods based on morphometry,

mtDNA variation, microsatellite loci, or even SNPs have
been effective in differentiating between evolutionary line-
ages and, to some extent, between subspecies of the same
lineage [22, 42, 45, 64–67]. Yet, our diagnostic tool is the
most comprehensive tool to date to reliably classify Euro-
pean honey bees into subspecies in a single analysis.
Moreover, the advantage of our approach is that it is a dy-
namic tool that can be updated to include more subspe-
cies by genotyping new samples and adding their data to
rebuild a classification model using ML with additional
subspecies. Ongoing research indicates that this approach
is applicable to A. m. siciliana from Sicily. Furthermore,
individual bees from South Africa tested with our system
were rejected as being of European origin (i. e., low predic-
tion probability to any of the subspecies). This dynamic
tool, therefore, could easily incorporate new populations
to be discriminated, and would even have the potential to
be optimized to differentiate populations/ecotypes within
subspecies, or to evaluate the degree of introgression.
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Conclusions
The main finding of the study is that our model can
classify bees into each of the European subspecies with
high accuracy. Consequently, as the bees included in this
project were collected in a vast area ranging from Russia
and Armenia in the East to Portugal in the West, and
from Malta in the South to Scotland in the North, we
conclude that much of the natural diversity of European
honey bees can still be considered extant, in spite of hu-
man interference since more than 150 years. The in situ
conservation of this genetic heritage is our duty [68],
and we believe that the honey bee subspecies diagnostic
tool presented will make a useful contribution. It is of
value in an array of applications: for beekeepers who
want to know the subspecies of their bees; for conserva-
tion managers in Europe, where subspecies diagnosis is
essential to monitor the hybridization rate of colonies
within conservatories; for veterinarians to control queen
trade; for bee breeders to certify the subspecies origin of
their queens; and for beekeepers to authenticate their
bee products.

Methods
Pool-sequencing samples
For this study, in total 22 populations have been sam-
pled, all within their native range (Tables 1 and S1), and
are referred to as different subspecies and genetic origins
according to the classification of Ruttner [8] and the
most recent revision of the genus Apis by Engel [62]: A.
m. iberiensis Engel 1999, A. m. mellifera Linnaeus 1758,
A. m. carnica Pollman 1879, A. m. caucasia Pollmann
1889, A. m. ligustica Spinola 1806, A. m. macedonica
Ruttner 1988, A. m. cecropia Kiesenwetter 1860, A. m.
cypria Pollman 1879, A. m. adami Ruttner 1975, A. m.
anatoliaca Maa 1953, A. m. remipes Gerstaecker 1862;
in addition we include A. m. ruttneri Sheppard et al.
1997 [69], “A. m. carpatica” Foti 1965 [60], and “A. m.
rodopica” Petrov 1991 [61]. There exist some uncer-
tainty and unresolved taxonomic status of some popula-
tions, and subspecies descriptions in literature have not
always been performed according to the standards laid
down in the International Code of Zoological Nomencla-
ture (ICZN) [62]. Thus, different views are found in lit-
erature to what is to be considered a subspecies or
ecotype. In this paper, we do not aim to resolve or justify
any classification. Finally, we considered 14 subspecies/
genetic origins (listed above) for our diagnostic tool,
which were used as categories in the machine learning
classification model.
Each selected population included up to about 100

(ranging from 86 to 100) worker bees from unrelated
colonies that were used for subsequent pool-sequencing.
Effort was undertaken to cover the entire distribution
range of any subspecies, while taking into account

within-subspecies variability when appropriate. We fo-
cused on collecting representative samples for each sub-
species by primarily sampling from beekeepers that were
known not to import bees in order to minimize the risk
of including hybrids. Moreover, we only chose one
worker bee per apiary to avoid related individuals and to
include as much diversity per population as possible.
Also in order to secure the subspecies-origin of the col-
lected samples, in some cases (where possible), a mor-
phometric analysis was performed and/or we relied on
already genotyped bees [55, 65, 66, 70–72]. Detailed in-
formation on sample origin and respective references are
presented in Table S1.

DNA extraction, library preparation, and pool-sequencing
The heads or thoraxes of up to 100 bees (Table S1) from
each pool were homogenized, DNA was extracted from
all samples by using a magnetic bead-based purification
method (NucleoMag® Blood 100 μL, Macherey-Nagel,
Germany). Subsequently, sequencing libraries of each
pool-DNA were constructed with the TruSeq DNA
PCR-Free library preparation kit and sequenced on an
Illumina HiSeq 2500 platform. Bioinformatic processing,
including trimming, mapping and variant calling of the
generated pool sequence data, was performed using best
practices and standard software (details in supplemen-
tary material and methods). The pipeline for the analysis
of the pool sequence data is available at https://github.
com/jlanga/smsk_popoolation.

Selection of ancestry informative markers
Several studies have selected a limited number of SNPs
to differentiate between the main evolutionary lineages
[15, 45, 46], however, for closely related subspecies more
markers and a more refined selection approach are
needed. Thus, we used two different approaches (PCA
and FST) [28, 34] to identify and select informative SNPs,
in order to capture the most discriminant markers at dif-
ferent levels: (i) SNPs to differentiate the four main evo-
lutionary lineages, (ii) SNPs to discriminate subspecies
within evolutionary lineages, and (iii) SNPs to identify
specific populations within subspecies (e.g. ecotypes).
First, we created a matrix with the minor allele fre-

quencies for each SNP and sequenced pool, which was
used to perform PCA to select SNPs that differentiate
the main evolutionary lineages (Figure S1A). Second,
PCA was performed separately on the subsets of pools
from each lineage in order to select informative SNPs to
discriminate subspecies within each lineage (Figure S1B-
D). We used the FactoMineR R package [73] and
custom-made R scripts to select at each hierarchical
level the SNPs with the highest contributions to the sig-
nificant PCs. Using this procedure, 300 PCA-informative
SNPs were selected for discriminating the four
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evolutionary lineages, 200 SNPs for the M-lineage, 600
SNPs for the O-lineage and 1100 SNPs for the most
complex C-lineage (Figure S1D). Preliminary simulations
using allele frequencies from the pool-sequencing re-
vealed that this approach was highly effective in discrim-
inating lineages and subspecies (Figure S1).
To select additional SNPs that can differentiate be-

tween pools, pairwise FST values [74] between all popu-
lation were calculated for each SNP with two settings
(loose and stringent options) using PoPoolation2 [75].
The loose setting option will return more SNPs with less
certainty and lower quality, which in turn potentially re-
duces genotyping success. This drawback is counterba-
lanced, since the loose option increases the chance of
identifying highly informative population-specific
(unique) SNPs. For either setting option (loose and strin-
gent), the pairwise FST values of each pool against all
other pools were summed up for each SNP and then
ranked according to the highest summed FST value. A
fixed and unique SNP in one pool is expected to have a
maximum sum of 21, which means this variant is only
present in this specific population. A reasonable trade-
off between unique and reliable SNPs was achieved by
selecting the top 20 SNPs with the highest summed FST
from the loose option and the top 80 SNPs from the
stringent option for each pool. With 22 pools, a total of
2200 informative population-specific SNPs were selected
using FST.
Overall, 4400 ancestry informative SNPs were selected

based on PCA and FST (Table S3). These highly inform-
ative markers are not only important for the assignment
of individuals to subspecies as presented in this study,
but, because of their varied allele frequencies in different
populations, they can be used, for instance, for classifica-
tion of new subspecies and for further follow-up studies.

Probe design
Probes for the 4400 selected SNPs were evaluated for
genotyping on the Illumina Infinium platform using Illu-
mina’s DesignStudio® software which requires as input
the flanking region of 50 bp up and downstream of each
SNP. SNPs were discarded if no probe could be designed
in the flanking region or if the probes had more than
one hit when aligned to the honey bee reference gen-
ome. The final list of 4197 SNPs was submitted to Illu-
mina for probe design and production. The SNPs are
distributed across all of the 16 honey bee chromosomes
as well as in unplaced contigs (Table S3; Additional file
1), with an average distance between SNPs of 64 kb.

Validation samples and genotyping
A total of 3958 individual bees were genotyped for the
selected SNPs, including 2050 same individual worker
bees that were used for pool sequencing, as well as 1908

newly collected individuals (Table 1). These new add-
itional samples were received from several different
sources and of variable quality, including whole honey
bees in ethanol, honey bees squeezed on FTA cards, tis-
sue samples from flight muscle or purified DNA. These
originated from SmartBees breeding apiaries [76] and
from colonies examined for Varroa-sensitive hygienic
behavior within the SmartBees project [77]. The samples
were genotyped using the custom-made BeadChip array
Infinium iSelect XT 96. The results were analyzed using
Illumina’s GenomeStudio® software, and the genotypes
of each sample were exported for further analysis. For
an initial visualization of the genotyping results, we cre-
ated t-distributed stochastic neighbor embedding (t-
SNE) manifold plots. This technique visualizes high-
dimensional data by giving each data point a location in
a two- or three-dimensional map [78]. Outliers and sam-
ples that were labeled as one subspecies, but were clearly
grouped with another cluster, were removed, in total 62
samples, leaving N = 1988 pool sequence reference sam-
ples. This was done with the objective to create a high-
quality and representative reference data set for subspe-
cies assignment.

Sample classification using machine learning (ML)
algorithms
In order to build a model to classify and predict the sub-
species assignment of unknown samples of European
honey bees, we employed ML methods using the scikit-
learn python environment [79]. First, the 1988 geno-
typed individuals from the pools were shuffled, then 70%
of them (N = 1391) were used as training data. The
remaining 30% (N = 597), together with the additional
newly collected individuals (N = 1908) were considered
as out-of-sample data (NTotal = 2505) for subsequent val-
idation (Table 1) [40]. Different supervised ML algo-
rithms were tested, including RandomForest,
LogisticRegression, SupportVector Machine (SVM), and
Linear SupportVectorClassifier (SVC) (Table S5; detailed
information on model selection in supplementary mate-
rials and methods). Briefly, the genotype data was con-
verted to a matrix compatible with machine learning
(one-hot encoding) [80]. Class information such as
lineage and subspecies of each sample was added to the
matrix, which was used to train the different machine
learning models to predict the sample ancestry. Linear
SVC was one of the best performing models according
to average accuracy estimated using cross-validation and
was finally selected (Table S5, Figure S5).
After training the Linear SVC model, it was used to

classify out-of-sample data (N = 2505). Samples were
classified according to the highest prediction probability
belonging to any of the subspecies. A confusion matrix
[81] was created to summarize and visualize the
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performance on out-of-sample data for which the true
values are known. Each row of the matrix represents the
true class, while each column represents the predicted
class based on the highest probability for each subspe-
cies. The resulting percentages compare a list of ex-
pected values with a list of predictions from the model.
In order for the model to be applied in practical con-

servation and breeding, we defined a threshold of 90%
based on the observed distribution of the prediction
probabilities (Figure S3), which are in accordance with
values found in bee literature [43, 82]. If the prediction
probability for any given sample is less than the thresh-
old of 90%, it is considered “unassigned”, while if it
exceeded the threshold it was assigned to the respective
subspecies.
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